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To satisfy the nondimensional requirement of N, e; must
satisfy a set of linear, homogeneous equations

n
Z Qi; €, = 0
j=1

In solving these equations for e; in a systematic manner, it
is convenient to transform the dimensional matrix to a uni-
tized form by the following operations: 1) interchanging
rows, 2) multiplying a row by a nonzero constant, 3) adding
one row to another, and 4) if necessary, interchanging
columns.

As a result, the number of rows in the unitized form
may be less than in the dimensional matrix. A unitized
matrix with four rows is of the form

1 0 0 O .. by
0 1 0 0 .. by

[[bsil = b0 1 0 .. B 3
0 0 0 1 oo by

Since the foregoing row and column operations also may be
applied to the equations of exponents without affecting their
results, the unitized matrix may be used to form a new set of
equations: '

Zbijej:()

j=1

By matrix theory, the number of independent equations of
such a set equals the number of nonzero rows in the uni-
tized matrix. That number also equals the rank of the
matrix. Therefore, with r nonzero rows, e;, . . . e, may be
considered dependent, and e.+1, . . . ¢, may be considered
independent. The exponents e;: of a single similarity num-
ber N may be obtained by letting one of the independent
exponents ¢, = 1 and letting the other independent ex-
ponents equal zero. The result is

Ni = w% w™ . w% @

The possibilities for k are k = 1, ... (n — r). Therefore,
a principle of dimensional analyses is that the number of
similarity numbers in a set is s = n — r, where n and r are
the number of columns and rows in the unitized dimensional
matrix.
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HE conditions under which a body subject to gravita-

tional-gradient torques will perform stable oscillations
about an equilibrium point are well known.t 2 However,
in most practical cases, torques other than those due to the
gravity gradient will act on the satellite.* The purpose of
this note i to demonstrate the effect of a constant disturbing
torque upon the transient response of a gravity-gradient
stabilized body.
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Fig. 1 Orientation of body axes with respect to orbital
local horizontal coordinates

It is assumed that the satellite is on a circular orbit.
Thus the oblateness and other asymmetries of the earth are
neglected. The only torques that act on the body are those
due to the gravity gradient and the constant disturbance.

Euler’s rotational equations of motion are

0.)z - szywz = (Mm/lz)G + (MI/II)D (13’)
oy — Ryw.w, = (My/L)e + (My/I)p (1b)
w, — R,y = (M./I.)e + (M./1.)p (1e)

where
R, = (I, — L)/,
R, = (.—I)/1,
R. = U.— 1)/,

The subseript G refers to the gradient torque, whereas D indi-
cates a disturbing torque. From the form of Eqs. (1a—lc), it
can be seen that the z y 2 axes are central principal axes.

The orientation of the body with respect to the local
horizontal coordinates is defined by the angles a, 8, and ¢
(see Fig. 1). In terms of the orientation angles and their
derivatives, the body angular rates are

w, = ¢ + (& + 0) sinf (2a)
w, = Bsing + (& 1+ 8) cosB cose (2b)
ws = B eose — (& + ) cosB sing (2¢)

where 6 is the angular rate of the local horizontal axes due
to the orbital motion. Finally, the gravitational-gradient
torques are*

(MZ/Ix)G

—362R,(sine cose + cosa sinf sing) X
(sine sing — cosa sinf cose) (3a)

(M,/1,)e = —362R, cosa cosB(sina cose -+
cosa sinf3 sing) (3b)

(M./1)e = —30°R, cosa cosB(sina sing —
cosa sinf cosg) (3c¢)

Consider the case in which there is a steady state pitch
angle. Such a condition might arise physically due to
residual drag forces acting in conjunction with a center-of-
mass, center-of-pressure separation. Thus a steady-state
value of « develops until the gradient torque is equal to the
disturbance in magnitude.
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If only the small disturbances about the steady-state
equilibrium condition are considered, then

a = as, + o (4a)
B =48 (4b)
o= dop (4c)

Linearizing Eqs. (1-3) about the equilibrium condition s
yields

(M,/I)p = 30°R, cosass sina, (5a)
d& + 30°R, da(cosas — sinas) = 0 (5b)

88 — 8B(R-H* + 3R.0° cos’ass) — 6¢(1 + R.)6 +
300R, 02 sina,, cosa., = 0 (5¢)

8¢ + E(R.0? + 3R.6? sin®a,,) + 88(1 — R,)6 —
3008R.6? sina,, cosas, = 0 (5d)

In the absence of a disturbing torque, R, and R, are nor-
mally positive and R. negative for stable behavior.f Thus

I,>I.>1, (6)

When a disturbing torque is present, the pitch response
essentially is unaltered if o is small. However, Eqgs. (5¢)
and (5d) now have a d¢ and a §3 term, respectively, if o, is
different from zero. The characteristic equation for the
coupled roll-yaw motion is

M+ N1 + 3R, sin?o,: — 3R, coso, — R.R.) —
3N® sina,, cosass(Rs + R.) — 4R.R.6* = 0 (7)
If @, 1s small, the four roots are, approximately,
M = fl—a + BO)e +
[1.50(R. + R.)/(b)"?] sinev,s  (Sa)

Ne = —0l—a + 3B +
[1.50(R. + R.)/ (b)) sina,

A = 9[—(1 — %(5)1/2]1/2 —
[1.50(R, + R.)/(6)V?] sina.. (8b)

M= _0‘[__(1 _ %(b)llz]lﬂ —
1.50(R, + R.)/(b)"?] sino,,

where

a
b

(3)(1 — 3R. — R.R.)
(1 — 3R. — R.R.)* + 16 R.R,

(]|

For the moment-of-inertia distribution given by Eq. (6),
M and A, are complex conjugates with negative real parts,
whereas A3 and s are conjugates with positive real parts.t
Thus the roll-yaw motion is unstable. If the sum of B, and
R. is zero, the real parts of Eqs. (8a) and (8b) are zero, but
the pitch restoring torque also is zero! Digital solutions of
the nonlinear differential equations have verified this in-
stability.

A disturbing torque that causes a steady-state value of 8
also is possible. In this case the three perturbation equa-
tions are coupled, and the characteristic equation is of the
sixth degree. For small values of B, the roots do not
have any positive real parts and the solutions are stable.
However, the digital solutions of the nonlinear equations
diverged for values of 8., greater than about 10°.

An examination of Eq. (3a) indicates that a constant
torque about the x axis requires that at least two of the three

T Another conditionally stable configuration is discussed in
Ref. 2. )

1 This assumes ags to be positive.
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orientation angles have steady-state values. This case has
not been examined extensively, but a limited number of
digital solutions were stable for small values of (M,)p.

The fact that a bias angle in pitch leads to instability in the
roll-yaw motion indicates the highly nonlinear nature of the
problem. A similar roll-yaw behavior is caused by the
foreed pitch motion due to orbital eccentricity.s Thus it is
apparent that the principle of superposition is of limited
use in stability analyses of gravity-gradient stabilized
satellites.
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N a method developed by Germain and the author!—2 for
discussing weakly nonisentropic one-dimensional flows
of an ideal compressible fluid, it was found that the addition
of an entropy perturbation introduced a nonhomogeneous
term in an otherwise homogeneous system of perturbation
equations, and, further, that the entropy perturbation could
be determined directly. Thus, the various problems con-
sidered could be solved by considering first the homogeneous
system (isentropic perturbed flow) and then adding particu-
lar solutions to the complete system (nonisentropic perturbed
flow). In two cases of interest, viz., an initially uniform or
centered simple-wave flow, it was found that the addition of
an entropy perturbation affected the sound speed but not the
particle velocity, i.e., there was a particular solution with the
particle-velocity perturbation equal to zero. A general dis-
cussion of this phenomenon, including necessary and suffi-
cient conditions for it to occur, was given in Refs. 2 and 3.
The forementioned perturbation theory has been extended
to one-dimensional hydromagnetic flow subjected to a trans-
verse magnetic field,*~7 and it was found that the addition
of an entropy perturbation did not affect the particle ve-
locity in an initially uniform flow. (This is a consequence
of the result that the nonisentropic perturbation of an
initially uniform flow must reduce to the solution of the cor-
responding problem in conventional gas dynamics in the
limit of vanishing magnetic field.)® But this result was not
obtained for an initially centered simple-wave flow.> It is
the purpose of the present paper to derive conditions for the
particle velocity to be unaffected by the addition of an en-
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